9.10 Problem-Solving Strategies

In this Chapter, we have seen how Biot-Savart and Ampere's laws can be used to calculate magnetic field due to a current source.

9.10.1 Biot-Savart Law:

The law states that the magnetic field at a point *P* due to a length element $d\vec{s}$ carrying a steady current *I* located at \vec{r} away is given by

$$d\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \frac{d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2} = \frac{\mu_0 I}{4\pi} \frac{d\vec{\mathbf{s}} \times \vec{\mathbf{r}}}{r^3}$$

The calculation of the magnetic field may be carried out as follows:

(1) <u>Source point</u>: Choose an appropriate coordinate system and write down an expression for the differential current element $I d\vec{s}$, and the vector \vec{r} describing the position of $I d\vec{s}$. The magnitude $r' = |\vec{r}'|$ is the distance between $I d\vec{s}$ and the origin. Variables with a "prime" are used for the source point.

(2) <u>Field point</u>: The field point *P* is the point in space where the magnetic field due to the current distribution is to be calculated. Using the same coordinate system, write down the position vector $\vec{\mathbf{r}}_P$ for the field point *P*. The quantity $r_P = |\vec{\mathbf{r}}_P|$ is the distance between the origin and *P*.

(3) <u>Relative position vector</u>: The relative position between the source point and the field point is characterized by the relative position vector $\vec{\mathbf{r}} = \vec{\mathbf{r}}_p - \vec{\mathbf{r}}'$. The corresponding unit vector is

$$\hat{\mathbf{r}} = \frac{\vec{\mathbf{r}}}{r} = \frac{\vec{\mathbf{r}}_P - \vec{\mathbf{r}}'}{|\vec{\mathbf{r}}_P - \vec{\mathbf{r}}'|}$$

where $r = |\vec{\mathbf{r}}| = |\vec{\mathbf{r}}_P - \vec{\mathbf{r}}'|$ is the distance between the source and the field point *P*.

(4) Calculate the cross product $d\vec{s} \times \hat{r}$ or $d\vec{s} \times \vec{r}$. The resultant vector gives the direction of the magnetic field \vec{B} , according to the Biot-Savart law.

(5) Substitute the expressions obtained to $d\vec{B}$ and simplify as much as possible.

(6) Complete the integration to obtain \vec{B} if possible. The size or the geometry of the system is reflected in the integration limits. Change of variables sometimes may help to complete the integration.

Current distribution	Finite wire of length L	Circular loop of radius R	
Figure	$\begin{array}{c} y \\ \vec{r} \\ \vec{r} \\ y \\ \vec{r} \\ \vec{r} \\ y \\ \vec{r} \\ \vec{r}$	x T	
(1) Source point	$\vec{\mathbf{r}} = x'\hat{\mathbf{i}}$ $d\vec{\mathbf{s}} = (d\vec{\mathbf{r}}'/dx')dx' = dx'\hat{\mathbf{i}}$	$\vec{\mathbf{r}}' = R(\cos\phi'\hat{\mathbf{i}} + \sin\phi'\hat{\mathbf{j}})$ $d\vec{\mathbf{s}} = (d\vec{\mathbf{r}}'/d\phi')d\phi' = Rd\phi'(-\sin\phi'\hat{\mathbf{i}} + \cos\phi'\hat{\mathbf{j}})$	
(2) Field point <i>P</i>	$\vec{\mathbf{r}}_P = y\hat{\mathbf{j}}$	$\vec{\mathbf{r}}_{P} = z\hat{\mathbf{k}}$	
(3) Relative position vector $\vec{\mathbf{r}} = \vec{\mathbf{r}}_p - \vec{\mathbf{r}}'$	$\vec{\mathbf{r}} = y\hat{\mathbf{j}} - x'\hat{\mathbf{i}}$ $r = \vec{\mathbf{r}} = \sqrt{x'^2 + y^2}$ $\hat{\mathbf{r}} = \frac{y\hat{\mathbf{j}} - x'\hat{\mathbf{i}}}{\sqrt{x'^2 + y^2}}$	$\vec{\mathbf{r}} = -R\cos\phi'\hat{\mathbf{i}} - R\sin\phi'\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ $r = \vec{\mathbf{r}} = \sqrt{R^2 + z^2}$ $\hat{\mathbf{r}} = \frac{-R\cos\phi'\hat{\mathbf{i}} - R\sin\phi'\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{\sqrt{R^2 + z^2}}$	
(4) The cross product $d\vec{s} \times \hat{r}$	$d\vec{\mathbf{s}} \times \hat{\mathbf{r}} = \frac{y dx' \hat{\mathbf{k}}}{\sqrt{y^2 + x'^2}}$	$d\vec{\mathbf{s}} \times \hat{\mathbf{r}} = \frac{R d\phi'(z \cos \phi' \hat{\mathbf{i}} + z \sin \phi' \hat{\mathbf{j}} + R \hat{\mathbf{k}})}{\sqrt{R^2 + z^2}}$	
(5) Rewrite $d\mathbf{\vec{B}}$	$d\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \frac{y dx' \hat{\mathbf{k}}}{(y^2 + x'^2)^{3/2}}$	$d\mathbf{\vec{B}} = \frac{\mu_0 I}{4\pi} \frac{R d\phi' (z \cos \phi' \hat{\mathbf{i}} + z \sin \phi' \hat{\mathbf{j}} + R \hat{\mathbf{k}})}{(R^2 + z^2)^{3/2}}$	
(6) Integrate to get $\vec{\mathbf{B}}$	$B_{x} = 0$ $B_{y} = 0$ $B_{z} = \frac{\mu_{0} I y}{4\pi} \int_{-L/2}^{L/2} \frac{dx'}{(y^{2} + x'^{2})^{3/2}}$ $= \frac{\mu_{0} I}{4\pi} \frac{L}{y \sqrt{y^{2} + (L/2)^{2}}}$	$B_{x} = \frac{\mu_{0}IRz}{4\pi(R^{2}+z^{2})^{3/2}} \int_{0}^{2\pi} \cos\phi' d\phi' = 0$ $B_{y} = \frac{\mu_{0}IRz}{4\pi(R^{2}+z^{2})^{3/2}} \int_{0}^{2\pi} \sin\phi' d\phi' = 0$ $B_{z} = \frac{\mu_{0}IR^{2}}{4\pi(R^{2}+z^{2})^{3/2}} \int_{0}^{2\pi} d\phi' = \frac{\mu_{0}IR^{2}}{2(R^{2}+z^{2})^{3/2}}$	

Below we illustrate how these steps are executed for a current-carrying wire of length L and a loop of radius R.

9.10.2 Ampere's law:

Ampere's law states that the line integral of $\vec{B} \cdot d\vec{s}$ around any closed loop is proportional to the total current passing through any surface that is bounded by the closed loop:

$$\mathbf{\tilde{N}}^{\mathbf{I}} \cdot d\mathbf{\tilde{s}} = \mu_0 I_{enc}$$

To apply Ampere's law to calculate the magnetic field, we use the following procedure:

(1) Draw an Amperian loop using symmetry arguments.

(2) Find the current enclosed by the Amperian loop.

(3) Calculate the line integral $\mathbf{\tilde{N}}^{\mathbf{I}} \cdot d\mathbf{\tilde{s}}^{\mathbf{r}}$ around the closed loop.

(4) Equate $\mathbf{\tilde{N}}^{\mathbf{i}} \cdot d\mathbf{\tilde{s}}^{\mathbf{r}}$ with $\mu_0 I_{\text{enc}}$ and solve for $\mathbf{\vec{B}}$.

Below we summarize how the methodology can be applied to calculate the magnetic field for an infinite wire, an ideal solenoid and a toroid.

System	Infinite wire	Ideal solenoid	Toroid
Figure		× s	
(1) Draw the Amperian loop		<i>w</i> 4 2 <i>B B B B B B B B B B</i>	
(2) Find the current enclosed by the Amperian loop	$I_{\rm enc} = I$	$I_{\rm enc} = NI$	$I_{\rm enc} = NI$
(3) Calculate $\mathbf{N}^{1} \cdot d\mathbf{s}^{r}$ along the loop	$\mathbf{\tilde{N}}^{\mathbf{i}} \cdot d\mathbf{\tilde{s}} = B(2\pi r)$	$\mathbf{\tilde{N}}^{\mathbf{I}} \cdot d^{\mathbf{r}} = Bl$	$\mathbf{\tilde{N}}^{\mathbf{i}} \cdot d\mathbf{\tilde{s}}^{\mathbf{r}} = B(2\pi r)$
(4) Equate $\mu_0 I_{enc}$ with $\mathbf{\tilde{N}}^{\mathbf{I}} \cdot d\mathbf{\tilde{s}}^{\mathbf{r}}$ to obtain $\mathbf{\tilde{B}}$	$B = \frac{\mu_0 I}{2\pi r}$	$B = \frac{\mu_0 NI}{l} = \mu_0 nI$	$B = \frac{\mu_0 NI}{2\pi r}$