(1) Draw a circuit diagram, and label all the quantities, both known and unknown. The number of unknown quantities is equal to the number of linearly independent equations we must look for.
(2) Assign a direction to the current in each branch of the circuit. (If the actual direction is opposite to what you have assumed, your result at the end will be a negative number.)
(3) Apply the junction rule to all but one of the junctions. (Applying the junction rule to the last junction will not yield any independent relationship among the currents.)
(4) Apply the loop rule to the loops until the number of independent equations obtained is the same as the number of unknowns. For example, if there are three unknowns, then we must write down three linearly independent equations in order to have a unique solution.

Traverse the loops using the convention below for ΔV :

resistor		travel direction
emf source	travel direction	travel direction
capacitor	travel direction	travel direction

The same equation is obtained whether the closed loop is traversed clockwise or counterclockwise. (The expressions actually differ by an overall negative sign. However, using the loop rule, we are led to $0=-0$, and hence the same equation.)
(5) Solve the simultaneous equations to obtain the solutions for the unknowns.

As an example of illustrating how the above procedures are executed, let's analyze the circuit shown in Figure 7.8.1.

